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Abstract

During healthy brain aging, different brain regions show anatomical or functional

declines at different rates, and some regions may show compensatory increases in

functional activity. However, few studies have explored interregional influences of

brain activity during the aging process. We proposed a causality analysis framework

combining high dimensionality independent component analysis (ICA), Granger cau-

sality, and least absolute shrinkage and selection operator regression on longitudinal

brain metabolic activity data measured by Fludeoxyglucose positron emission tomog-

raphy (FDG–PET). We analyzed FDG–PET images from healthy old subjects, who

were scanned for at least five sessions with an averaged intersession interval of

1 year. The longitudinal data were concatenated across subjects to form a time series,

and the first-order autoregressive model was used to measure interregional causality

among the independent sources of metabolic activity identified using ICA. Several

independent sources with reduced metabolic activity in aging, including the anterior

temporal lobe and orbital frontal cortex, demonstrated causal influences over many

widespread brain regions. On the other hand, the influenced regions were more dis-

tributed, and had smaller age-related declines or even relatively increased metabolic

activity. The current data demonstrated interregional spreads of aging on metabolic

activity at the scale of a year, and have identified key brain regions in the aging pro-

cess that have strong influences over other regions.
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1 | INTRODUCTION

The human brain undergoes development and aging across the entire

life span. Neuroimaging studies have demonstrated that different brain

regions develop and age in different rates. The global gray matter vol-

ume decreases linearly after 20 years of age, but some regions such as

the bilateral insula, superior parietal gyri, central sulci, and cingulate

sulci show faster volumetric declines as measured by voxel-based mor-

phometry (Good et al., 2001). Cortical thickness measures show more

widespread cortical thinning patterns during aging (Salat et al., 2004). In

contrast, results from functional magnetic resonance imaging (fMRI)

studies are more complex with some brain regions show increased acti-

vations in certain tasks rather than declined activations accompanied

with the anatomical declines (Di, Rypma, & Biswal, 2014; Spreng,

Wojtowicz, & Grady, 2010). In addition, the functional alterations in

aging may depend on the task domains and behavioral performances

(Spreng et al., 2010), making it difficult to conclude a region to be func-

tionally increased or decreased in aging. A complementary approach is

to study brain activity during a state without specific behavioral

involvements, that is, resting-state. Studies have been performed earlier

using positron emission tomography (PET) (Kuhl, Metter, Riege, &

Phelps, 1982; Martin, Friston, Colebatch, & Frackowiak, 1991;

Zuendorf, Kerrouche, Herholz, & Baron, 2003), and later using resting-

state fMRI (Biswal et al., 2010). Using a large sample of over 1,000 sub-

jects, Biswal et al. (2010) have shown reduced resting-state activity in

aging mainly in the default model network and increased activity in the

visual, motor, and subcortical regions.

Functionally related brain regions typically show similar code-

velopments (Alexander-Bloch, Raznahan, Bullmore, & Giedd, 2013) or

codeclines, therefore yielding cross-subject interregional covariances.

This has been shown as early as 1980s using regional cerebral blood

flow data (Prohovnik, Håkansson, & Risberg, 1980) and regional meta-

bolic activity data (Horwitz, Duara, & Rapoport, 1984; Metter, Riege,

Kuhl, & Phelps, 1984) measured using PET. Later, more sophisticated

methods, such as independent component analysis (ICA) and graph

theory-based analysis, have been applied to PET data to study the

brain metabolic covariance networks (Di et al., 2017; Di, & Biswal, &

Alzheimer's Disease Neuroimaging Initiative, 2012). Correlated meta-

bolic activity or blood flow was typically found between left/right

homotopic regions, and between some within hemisphere regions

that are functionally related, for example, language-related regions in

the left hemisphere. However, different connectivity patterns have

been found between this metabolic covariance connectivity and the

resting-state connectivity that has been typically observed from fMRI

data (Di et al., 2017; Di et al., 2012). The intersubject covariance pat-

terns have also been shown using other imaging modalities, such as

brain volumes (Di & Biswal, 2016; Douaud et al., 2014; Mechelli,

Friston, Frackowiak, & Price, 2005), cortical thickness (Lerch et al.,

2006), and different resting-state fMRI indices (Taylor, Gohel, Di,

Walter, & Biswal, 2012; Zhang et al., 2011).

Given the different rates of declines or relative preservations of dif-

ferent brain regions in aging, and large-scale brain networks working in

synchrony during both task execution and resting-state (Bullmore &

Sporns, 2009, 2012; Di, Gohel, Kim, & Biswal, 2013), it is likely that the

regions that are working together affect each other during the aging

process. Specifically, a region that declines faster may influence another

region during functional interactions in everyday basis; therefore would

cause the other region to decline or show a compensatory increase of

functional activity. So, it is critical to study the causal interregional influ-

ences between regions rather than the simple covariance, especially at

the time scale of months to years when brain aging could be observed.

Although regional brain aging is generally assumed to be linear in trend,

the observed regional brain measures might showed fluctuations along

the linear trend (Figure 1). The causal influence between regions could

then be captured by causality analysis methods such as Granger causal-

ity (Granger, 1969). By using Granger causality, we could examine

whether the brain activity in a brain region at time points of months or

years earlier can predict the activity of another brain region at the cur-

rent time point. Granger causality at the similar time scales has been

studied on brain morphological progressions in epilepsy (Zhang et al.,

2017) and schizophrenia (Jiang et al., 2018) based on anatomical MRI

data. However, both of these studies are cross sectional. Large-scale

multisite longitudinal open access dataset, such as Alzheimer's Disease

Neuroimaging Initiative (ADNI), has made it possible to examine causal

influences during aging in a within-subject manner. Extending our previ-

ous work on metabolic covariance networks using Fludeoxyglucose

(FDG) PET images (Di et al., 2017; Di et al., 2012), we sought in the cur-

rent study to examine the interregional causal influences of metabolic

activity during aging.

The aim of the current study is to explore the causal interregional

influences of metabolic activity during normal aging at the time scale of

a year. We leveraged the longitudinal FDG–PET data from the ADNI

dataset, where there were at least five sessions of FDG–PET scans for

each subject at a time step of approximately 1 year. First, we examined

regional age effects of metabolic activity to identify regions with accel-

erated declines, with no apparent age effects, and with relative

F IGURE 1 An illustration of interregional causal effects during
aging. Regions A and B both show linear declines during aging at
different rates, with additional fluctuations along the linear trends.
The fluctuations of Region A influences those in Region B, so that an
event in A can be observed one time point later in B (e.g., the marked
peak at age 66 and 67 in Regions A and B, respectively) [Color figure
can be viewed at wileyonlinelibrary.com]
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increases. Second, we performed whole brain Granger causality analysis

to identify causal influences, where the metabolic activity in a region at

a certain time point can be predicted by the metabolic activity in

another region at the previous time point. We predict that the regions

that show accelerated declines during aging will cause other regions to

decline, thus showing interregional spreads of age effects.

2 | METHODS

2.1 | ADNI data

Data used in the preparation of this article were obtained from the

ADNI database (ADNI: RRID:SCR_003007; adni.loni.usc.edu). The

ADNI was launched in 2003 as a public–private partnership, led by

Principal Investigator Michael W. Weiner, MD. The primary goal of

ADNI has been to test whether serial MRI, PET, other biological

markers, and clinical and neuropsychological assessment can be com-

bined to measure the progression of mild cognitive impairment (MCI)

and early Alzheimer's disease.

Only data from healthy participants were included in the current

analysis. All participants showed no signs of depression, MCI, or

dementia, with Mini-Mental State Exam scores between 24 and

30 and Clinical Dementia Rating score of 0. We manually selected lon-

gitudinal FDG–PET images from the ADNI database, with participants

who had at least five sessions of FDG–PET images available. As a

result, 72 subjects (25 females) were included in the current analysis

with a total of 432 PET scan sessions. The numbers of available ses-

sions ranged from 5 to 9 (Figure 2a). The average age at the first ses-

sion was 75.8 years (62–86 years). For each session, we calculated a

mean image or adopted the only image to represent the session. The

intersession interval with a subject varied from 3 months to up to

8 years for a few rare cases (Figure 2b). The mean and median of the

intersession intervals were 1.02 and 0.98 years, respectively.

The FDG–PET images were acquired from multiple sites with dif-

ferent PET imaging protocols. However, the imaging parameters were

mostly similar across different sessions within a subject. Since the cur-

rent analyses were all within-subject, the impacts of different imaging

parameters from different sites can be effectively minimized. More

information about the PET protocol can be found in (Jagust et al.,

2010). All the images and subjects included in the current analysis can

be found at https://osf.io/4a3vt/.

2.2 | PET data preprocessing

The PET data were preprocessed using SPM12 (SPM: RRID:

SCR_007037; https://www.fil.ion.ucl.ac.uk/spm/) under MATLAB

R2017b. For each subject, if there were more than one PET image in a

session, all the PET images in the session were realigned to the first

image and the mean image of the session was calculated. The mean

images (or the only image) across all the sessions of a subject were then

realigned to the one in the first session. The cross-sessional mean

image was normalized directly to the PET template in SPM in standard

Montreal Neurological Institute (MNI) space, and then all the images

were normalized to MNI space using the same set of parameters. We

chose the direct normalization approach rather than using an anatomi-

cal MRI as a mediator, because the spatial resolutions of the PET

images were adequate and the direct normalization has its own advan-

tage compared with the anatomical MRI-mediated method (Calhoun

et al., 2017). The images were then spatially smoothed using a Gaussian

kernel with 8 mm full width at half maximum. Finally, each image was

divided by its mean signal within an intracranial volume mask.

2.3 | Independent component analysis

We first performed spatial ICA to separate the whole brain metabolic

maps into independent sources of local metabolic variations (Di, &

Biswal, and Alzheimer's Disease Neuroimaging Initiative, 2012). We

extracted a relatively high number of ICs, so that the resulting ICs

could represent more local variations than large-scale networks

(Fu et al., 2018, 2019; Smith et al., 2013). This data-driven approach is

an alternative to atlas-based parcellation, and may be more represen-

tative to local variations of metabolic activity. The ICA was performed

using Group ICA of fMRI Toolbox (GIFT: RRID:SCR_001953; http://

mialab.mrn.org/software/gift) (Calhoun, Adali, Pearlson, & Pekar,

2001). The preprocessed FDG–PET images from different sessions

and subjects were concatenated into a single time series, and fed into

F IGURE 2 Histograms of the numbers of
sessions for each subject (a) and the intersession
intervals for all the sessions and subjects (b). The
participants were typically studied at 0, 6, 12, 24,
and 36 months related to the first visit, and yearly
follow-ups. Therefore, the intersession intervals
are likely to be around 6 months or 1 year
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the ICA analysis. Eighty-one components were recommended by the

minimum description length algorithm implemented in GIFT. After

extraction of the 81 components, the ICs were visually inspected and

grouped into eight domains (Supporting Information) as well as

21 noise components. There were in total 60 ICs included in the fol-

lowing analysis. For each IC, the associated time series were obtained

to represent metabolic activity of this source in different subjects and

sessions. The 81 IC maps are available at https://osf.io/4a3vt/.

2.4 | Regional age effects

For each subject, a general linear model (GLM) was built to examine

aging effects. The GLM included two regressors, a constant term and

a linear age effect. The GLM analysis was performed on each IC, and

the β values of the age effect were obtained. Group level analysis was

then performed on each IC using a one sample t-test model to exam-

ine the group averaged effect of age. A false discovery rate (FDR)

corrected p < .05 was used to identify ICs that had significant age

effects after correcting for all the 60 comparisons. Thereafter, the ICs

were sorted into three groups, with significant (relative) increased

metabolic activity, with no significant changes, and with significant

decreased metabolic activity in aging.

2.5 | Interregional causality analysis

We adopted Granger causality to examine the interregional causal influ-

ence of metabolic activity. Specifically, we treated the longitudinal

FDG–PET data as time series, and used autoregressive model to predict

the value of time point t in a region y by the previous time points of

another region x, when controlling for its own previous time points. In

the current data, the time step is approximately 1 year. To account for

the variability of intersession interval, the intervals between time points

t and t−1 were added as a covariate or regressed out in the analysis

(see below for details). Another consideration is the order of the model,

that is, how many previous time points are used to predict the current

time point. In this study, we used only the first order model to measure

the causal influence of only one previous time point, which represents

a time step of about 1 year. The limited number of time points in a sub-

ject prevents us to use higher order models. The advantage of using

only the first order model is that the sign information of the beta esti-

mate enables us to differentiate positive and negative predictions. The

model can be expressed in the following form:

yt = β0 + β1�yt−1 + β2�xt−1 + ε

where y represents the predicted time series in one brain region, and

x represents the predicting time series of another brain region. yt−1

represents the time series of yt which moved one time point ahead,

thus representing a autoregression model of time series y. The effect

of interest is the predicting value of xt−1, which is β2.

We concatenated the time series across all the subjects to form a

long time series for analysis (Figure 3). Therefore, the model is consid-

ered fixed effect model. The time series of a subject were first z

transformed to minimize intersubject variation, where mi represents the

total number of time points in a subject i. For each subject, we included

the time points 2 to m of the time series of a region as the predicted

variable yt. The autoregressive variable yt−1 included the time points

1 to m−1 of the time series of the same region. The predicting variable

xt−1 was the time points 1 to m−1 from another region x. After concat-

enation, there were in total 360 data points in the time series.

The model could be applied to each pair of the ICs from the

60 ICs. The intersession interval between time t and time t−1 were

included in the model as a covariate. We first performed such analysis

on each pair of ICs to obtain the predicting effect (β2) and

corresponding p values, which formed a 60 × 60 matrix of causal

effects. FDR correction at p < .05 was used to correct for multiple

comparisons of the in total 3,540 (60 × 59) effects, where the auto-

regressive effects along the diagonal were not tested.

This pairwise approach may identify influences from different

regions with shared variance although maybe only one region has direct

influence with the tested region. To overcome this, when predicting a

region xit, one can add all the other ICs to identify which region can pre-

dict xit. The model is then as following for a predicted region xi:

xit = β0 + β1�x1t−1 + β2�x2t−1 + β3�x3t−1 +…+ βp�xpt−1 + ε

Since all the ICs were included in the model, there was no need to

differentiate the variables of x and y. Therefore, we use x to denote all

the time series variables. The superscripts of x now represent different

ICs, where p represents the total number of the ICs. Before entering in

to the model, a time series representing the intersession interval

between time point t and t−1 were regressed out from all the xt−1 time

series to account for the intersession interval variability. Estimating the

multivariate model may be challenging, especially when some of the IC

time series may be highly correlated. It can be assumed that only a small

number of ICs may influence the predicted IC. In this scenario, one can

use regularization method to estimate the sparse influence effects, such

as using least absolute shrinkage and selection operator (LASSO) (Tang,

Bressler, Sylvester, Shulman, & Corbetta, 2012; Tibshirani, 1996). The moti-

vation of choosing LASSO over other regularization methods is that the

LASSO regularization can force some parameters in the model to be zero

thus resulting in only a small number of nonzero parameters. This is impor-

tant in the current context, because the aim is to identify a small number

of interregional influences. Since this model examines the prediction of the

time series of one IC by the time series of all the other ICs, the analysis only

needed to be performed for 60 times (compared with 60 × 59 times in the

pairwise analysis) to cover all the interregional influences.

The LASSO regression was performed using the lasso function

implemented in MATLAB. To determine an optimal regularization fac-

tor λ, we used a set of λ from 0 (no regularization) to 0.5 with a step

of 0.001. The identified nonzero influences dropped dramatically as

the increase of λ. We identify the λ where the number of nonzero

influences were the closest to the number of significant effects when

using FDR correction in the pairwise analysis, and reported all the

nonzero influencing effects.
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The resulting 60 × 60 influencing matrix can be treated as a

directed network graph, where the ICs represent the nodes and the

causal influences represent directed edges of the graph. We calcu-

lated in-degree and out-degree of the 60 nodes to characterize the

importance of an IC in the whole brain influencing graph. To ensure

that the degree calculation was not affected by arbitrary defined

threshold, we also explored the graphs from other λ values to verify

the identified hub regions are still present. To visualize the network

topology, we identified the giant component where all the nodes in

the component were somehow connected (without considering the

direction of the influences). The giant components were visualized

using the force layout.

3 | RESULTS

3.1 | Age effect on regional metabolic activity

We first examined the age effects on the regional metabolic activity

for the 60 ICs. Statistical significant ICs at p < .05 after FDR correc-

tion are shown in Figure 4. Eighteen ICs showed significant reduced

metabolic activity, including one IC that covered the inferior portion

of the cerebellum (IC 1), three ICs that coved visual cortex (IC 17,

32, and 53), three ICs that covered the posterior parietal cortex

(IC 21, 27, and 28), five ICs that covered the anterior portion of the

temporal lobe and insula (IC 24, 44, 63, 66, and 77), one IC that cov-

ered the thalamus and basal ganglia (IC 23), two ICs that covered the

orbital frontal cortex and frontal pole (IC 3 and 48), and three ICs that

covered the cingulate cortex and neighboring midline cortical regions

(IC 7, 37, and 46). The left panel of Figure 5 illustrates the negative

age effects of an example IC (IC 48). It can be seen that there is a gen-

eral linear trend of decrease of metabolic activity. However, each sub-

ject showed fluctuations of metabolic activity along the linear trend.

In contrast, six ICs showed increased metabolic activity. It should be

noted that due to the nature of PET imaging, the global signal for each

PET image has to be normalized. Therefore, it is difficult to say

whether the positive age effect represents increased metabolic activ-

ity, or a relative increase with reference to the global effect. The ICs

with relative increased metabolic activity during aging included one IC

covering the inferior and posterior portion of the cerebellum (IC 13),

two subcortical ICs covering the basal ganglia, insula, amygdala, and

thalamus (IC 19 and 52), and three ICs of sensorimotor regions (IC 36,

50, and 68). The right panel of Figure 5 illustrates the positive age

effects of an example IC (IC 19). There were 36 ICs that did not show

statistically significant age effects at p < .05 after FDR correction. The

middle panel of Figure 5 illustrates the age effects of an example IC

(IC 56) with no statistical significant age effect.

3.2 | Interregional causal influences of metabolic
activity

We first applied pairwise autoregressive model to obtain a 60 × 60

matrix of the interregional causal influences of metabolic activity

between each pair of the ICs (Figure 6a). When using a statistical

threshold of p < .05 of FDR correction, 14 positive and 13 negative

causal influences were identified (Figure 6b). We next performed

LASSO regression with xt of an IC as the predicted variable and xt−1

of all the ICs as the predicting variables using a range of λ. We identi-

fied the λ value where the number of nonzero effects was the closest

to the number of significant effects in the pairwise analysis. The

resulting influencing effects at λ = 0.162 (Figure 6c) look in general

similar to the significant effects identified by the pairwise analysis,

although some subtle differences can be noted. There were 15 posi-

tive and 13 negative causal influences identified using LASSO regres-

sion (Table 1).

Among the 28 causal influences from LASSO regression, the first

giant component was comprised of 26 causal influences involving

25 ICs (Figure 7). The IC maps were color-coded based on their

regional age effects to illustrate the relationships between regional

metabolic activity changes and the signs of causal influences. It can be

seen that the influences between two decreased regions or two

increased regions in aging were in general positive, but the influences

between one increased and one decreased regions were in general

negative. For example, the bilateral anterior temporal IC (IC 63 in

Figure 6) positively influenced the medial parietal IC (IC 27), but nega-

tively influenced the basal ganglia IC (IC 19). It is consistent with the

direction of the spread of age effects. There were also ICs that with-

out apparent age effects, where the signs of causal influences with

other regions did not show clear pattern.

To better illustrate the topology of the interregional influencing

network and to highlight the regions that are more influencing or

influenced to other regions, we plotted the first giant components of

the interregional influencing network using force layout at λ = 0.162,

F IGURE 3 Illustration of the construction of the variables used in the causality analysis. x represents the predicting region, and y represents
the predicted region. The superscript represents different subjects, with a total number of n. The subscript represents the scan session in a
subject, with a total number of mi for a subject i
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F IGURE 5 Examples of aging effects of metabolic activity of three independent components (ICs) that had negative, nonsignificant, and
positive aging effects. Each colored line represents one subject. t and p values represent group-level one sample t-test statistics. A.u.,
arbitrary unit [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 The independent components (ICs) that showed statistically significant decreased (blue) and increased (red) metabolic activity
during aging after controlling for global effect at p < .05 with false discovery rate (FDR) correction. The numbers to the bottom right represent
the IC number [Color figure can be viewed at wileyonlinelibrary.com]
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and also at more liberal thresholds of λ = 0.142 and λ = 0.122

(Figure 8). The node sizes represent the out-degree and in-degree of a

node in the network in the upper and middle panels, respectively. It

can be seen that the nodes with large out-degree were in general the

regions with decreased metabolic activity (blue nodes). The red arrows

highlighted the two nodes that had five out-degrees at λ = 0.162 and

remained among the highest out-degree nodes at the lower λ values.

These two nodes were also highlighted in Figure 7, which covered the

bilateral orbitofrontal cortex (IC 48) and the bilateral anterior temporal

lobe (IC 63). While in terms of in-degree, there were no clear regions

that had exceptionally high in-degree compared with other nodes.

The node with high in-degree had no apparent age effects (green

nodes) or had increased metabolic activity with age (brown nodes).

The distributions of nodal out- and in-degree confirmed that the out-

degree distributions had heavy tailed distributions compared with the

in-degree distributions (lower panels in Figure 8).

4 | DISCUSSION

By applying autoregressive model on longitudinal FDG–PET data, the

current study demonstrated causal interregional influences of meta-

bolic activity during normal aging. Several ICs with significant reduced

metabolic activity in aging, including the orbital frontal cortex and

anterior temporal lobe, causally influenced many other ICs. In con-

trast, the influenced ICs were more widespread and with less local

aging effects or even with relatively increased metabolic activity. To

the best of our knowledge, this is the first study to demonstrate longi-

tudinal interregional causal influences of brain activity during aging at

the time scale of a year.

Consistent with our predictions of interregional spreads of age

effects, the influencing ICs usually had decreased metabolic activity.

On the other hand, the influenced regions were not restricted to the

regions with reduced metabolic activity in aging. Indeed, the ICs that

had relatively greater in-degree values than other ICs were usually

without apparent age effects, or even with relatively increased meta-

bolic activity, for example, the basal ganglia and thalamus. Therefore,

the causal interregional influences in general reflected the spread of

age effects from brain regions that had already declined to regions

that are declining or relatively preserved. We note that the absence of

regional age effects should be interpreted with caution, because the

removal of global effects during calculation of regional age effects

could have removed significant age effects that were similar to the

global effects.

The interpretation of the causal influences need to consider both

the sign of the causal influences and the regional age effects. A posi-

tive influence indicates that the metabolic activity in Region A at the

current time point positively predicts the metabolic activity in Region

B at the next time point. While a negative influence indicates a nega-

tive prediction. If the two regions are both decreasing during aging,

then a positive influence may indicate a spread of metabolic activity

decline between the two regions. On the other hand, if Region A

decreases but Region B shows relatively increased metabolic activity,

and there is a negative influence between A and B, then it may indi-

cate a compensation of Region B that is resulted from the declined

function of Region A. A close look at the patterns of the directions of

the local and interregional effects indicated that most of the effects

observed were consistent with the spatial spread or compensation

interpretations. That is, the influences between two decreased regions

were all positive, and the influences between one decreased region

and one increased regions were all negative.

The current analysis identified several hubs that influenced other

brain regions, most prominently the anterior temporal lobe and orbital

frontal cortex. The anterior temporal lobe (IC 63) is connected to sev-

eral major white matter tracts such the cingulum, inferior longitudinal

fasciculus, and uncinate fasciculus (Catani & Thiebaut de Schotten,

2008), which could support its influencing role to other regions such

as the subcortical regions, inferior frontal cortex, and left temporal

cortex. To better characterize its functional correlates, we submitted

F IGURE 6 (a) Pairwise matrix of interregional causal influence of metabolic activity. The columns represent influencing independent
components (ICs), while the rows represent influenced ICs. (b) Ternary matrix of significant positive or negative interregional causal influences
thresholded at p < .05 after false discovery rate (FDR) correction. (c) Ternary matrix of positive or negative interregional causal influences

identified at λ = 0.162 using least absolute shrinkage and selection operator (LASSO) regression [Color figure can be viewed at
wileyonlinelibrary.com]
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the IC map into NeuroVault (NeuroVault, RRID:SCR_003806; https://

neurovault.org), and decoded the functions of these maps using

large-scale meta-analytic data from Neurosynth (NeuroSynth, RRID:

SCR_006798; http://neurosynth.org/) (Rubin et al., 2017). The first five

functional terms were all about language and semantic processing (see

Table S2, Supporting Information). Studies also showed that electrical

stimulation of the anterior temporal lobe can improve proper name

recalls in aging (Ross, McCoy, Coslett, Olson, & Wolk, 2011), and bilin-

gualism can protect the integrity of anterior temporal lobe in aging

(Abutalebi et al., 2014). Taken together, the results suggest that lan-

guage process might be an important factor modulating brain aging.

The orbital frontal cortex (IC 48) is connected to the uncinate fascicu-

lus and inferior fronto-occipital fasciculus (Catani & Thiebaut de Schotten,

2008), which could support its influences to the posterior visual regions.

The functional words related to the orbitofrontal IC were mainly about

emotional processing (Table S2, Supporting Information). In older

population, smaller orbitofrontal volumes are shown to be associated with

depression (Lai, Payne, Byrum, Steffens, & Krishnan, 2000; Taylor et al.,

2003). Taken together, emotional process might also be an important fac-

tor modulating brain aging. However, although previous studies have

shown associations between resting-state brain activity and task activa-

tions (Di, Kannurpatti, Rypma, & Biswal, 2013; Yuan et al., 2013), the

extent to what resting-state brain activity can reflect certain brain func-

tions are still largely unknown. Further studies might need to design

proper tasks to better link functions to brain activations.

A limitation of the current analysis is the potential confounding

effect due to partial volume (Bonte et al., 2017; Rousset, Ma, & Evans,

1998), that is, whether an observed effect is due to the changes of

bona fide metabolic activity or the changes of underlying gray matter

volume. However, the following reasons make the partial volume con-

founding less problematic. First, the current analysis adopted within

subject comparison, which has already minimized the partial volume

TABLE 1 List of interregional causal influences of metabolic activity identified at λ = 0.162 using LASSO regression

From ! To

IC # Label Sign IC # Label

52 Thalamus, brainstem − 27 Precuneus

36 Supplementary motor area, paracentral lobule + 52 Thalamus, brainstem

44 Insula, inferior frontal gyrus, superior temporal pole + 77 Temporal pole, medial orbitofrontal cortex

63 Temporal pole + 40 Left middle temporal gyrus

63 Temporal pole + 27 Precuneus

44 Insula, inferior frontal gyrus, superior temporal pole − 20 Right inferior and middle frontal gyrus

63 Temporal pole − 38 Left thalamus, caudate, lingual gyrus

44 Insula, inferior frontal gyrus, superior temporal pole − 16 Superior and middle frontal gyrus

39 Superior parietal lobule, precuneus + 20 Right inferior and middle frontal gyrus

19 Basal ganglia, amygdala, insula − 46 Posterior cingulate cortex, precuneus, lingual gyrus

63 Temporal pole − 19 Basal ganglia, amygdala, insula

63 Temporal pole − 34 Inferior frontal gyrus

81 Lobule VII crus, lobule VI hemisphere, vermis − 6 Lobule VII crus

39 Superior parietal lobule, precuneus + 19 Basal ganglia, amygdala, insula

19 Basal ganglia, amygdala, insula − 17 Lingual gyrus, calcarine sulcus, cuneus

48 Orbitofrontal cortex, superior temporal pole + 39 Superior parietal lobule, precuneus

28 Inferior parietal lobule, precuneus + 17 Lingual gyrus, calcarine sulcus, cuneus

48 Orbitofrontal cortex, superior temporal pole + 47 Postcentral gyrus, inferior parietal lobule

48 Orbitofrontal cortex, superior temporal pole + 56 Superior and middle occipital gyrus

28 Inferior parietal lobule, precuneus + 56 Superior and middle occipital gyrus

28 Inferior parietal lobule, precuneus + 43 Lobule VII and VIII, hemisphere

48 Orbitofrontal cortex, superior temporal pole + 11 Lingual gyrus, calcarine sulcus, cuneus

48 Orbitofrontal cortex, superior temporal pole + 69 Inferior occipital and fusiform gyrus

80 Inferior parietal lobule − 56 Superior and middle occipital gyrus

5 Left inferior frontal gyrus, left middle occipital gyrus − 28 Inferior parietal lobule, precuneus

78 Postcentral gyrus − 12 Superior and middle occipital gyrus

5 Left inferior frontal gyrus, left middle occipital gyrus + 80 Inferior parietal lobule

5 Left inferior frontal gyrus, left middle occipital gyrus − 66 Left inferior temporal gyrus

Abbreviation: LASSO, least absolute shrinkage and selection operator.
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effects due to inter subject anatomical variability. Second, we applied

ICA to identify independent sources of metabolic variability. Some

components that were likely due to enlargement of ventricle and are

spatially overlapped with the included ICs, have been already

removed. For example, there was an IC largely located in ventricle

area (IC 79 in Figure S9, Supporting Information) but with substantial

overlaps with the ICs of the thalamus and basal ganglia (Figure S5,

Supporting Information). The IC 79 had the second strongest negative

age effect among all the ICs. The included ICs that had spatial overlap

with this IC showed no age effects or even positive age effects,

suggesting that the partial volume effects associated with enlarged

ventricle have been minimized in these ICs. Third, even though the

observed causal influences may still somehow contributed by the

residual partial volume effects, the causal influences of volumetric

reductions may still be important findings for understanding brain

aging. The structural MRI images are available in the ADNI dataset,

but were not always acquired at the same time point as the PET

images, making the incorporation of MRI images in the model difficult.

Future studies should certainly consider taking into account of anatomical

information in the analysis. Indeed, it may be theoretically more important

to study the interaction or causal influences between brain anatomy and

functions in aging. According to the compensation model, the reduction of

gray matter will lead to elevated functional responses, which then give rise

to less affected behavioral performances (Gregory et al., 2018; Reuter-

Lorenz & Park, 2014; Shafto & Tyler, 2014). A direct examination of causal

influences among local and interregional gray matter structures, functions,

and behavioral performances may provide more insight to the dynamic of

compensation process in aging.

One strength of the current analysis approach is that we adopted

multivariate methods and LASSO to include all the ICs in the

predicting models, which in theory can prevent identifying ICs that

have indirect predicting effects to the target (Smith et al., 2011; Tang

et al., 2012). On the other hand, there are also several simplifications

of the Granger causality analysis, such as the inclusion of only the first

order model and the assumption of equal time steps. Since the current

study is the first to explore the causality in the aging process, the time

F IGURE 7 Interregional causal influences network at λ of 0.162 using least absolute shrinkage and selection operator (LASSO) regression.
The colors of the independent component maps represent increased (red), decreased (blue), and nonsignificant (green) age effects on metabolic
activity. The colors of the arrows represent positive (red) and negative (blue) interregional influences, respectively. The maps highlighted with
yellow circle represent hub regions in the network [Color figure can be viewed at wileyonlinelibrary.com]
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lag of the aging progression is still largely unknown and bear further

studies. However, practically due to the limited availability of longitu-

dinal data, this question is difficult to solve at the current stage.

Regarding the variable time steps of the time series, we added the

intersession interval as a covariate to minimize the effects, which is

similar to a previous work (Jiang et al., 2018). More sophisticated

models, such as generative model and differential equation-based

method (Ziegler, Penny, Ridgway, Ourselin, & Friston, 2015; Gabriel

Ziegler, Ridgway, Blakemore, Ashburner, & Penny, 2017), may be used

in future to better characterize the causal effects.

5 | CONCLUSION

By applying Granger causality analysis on longitudinal FDG–PET

images of healthy old participants at a time step of 1 year, the current

analysis revealed interregional causal influences during aging. Several

regions with reductions in local metabolic activity during aging, includ-

ing the bilateral anterior temporal lobe and orbitofrontal cortex,

showed causal influences to other regions, supporting an interregional

spread of age effects in the brain. The current analysis and results

could add new insights to the neurocognitive aging literature about

interregional interactions during the aging process.
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